
J. Fluid Mech. (1994), uol. 280, p p .  395407 
Copyright @ 1994 Cambridge University Press 

395 

Realizability of second-moment closure via 
stochastic analysis 

By P.A. DURBIN’  AND C.G. SPEZIALE2 
‘Center for Turbulence Research, Stanford University, Stanford, CA 94305-3030, USA 

*Aerospace & Mechanical Engineering Department, Boston University, Boston, MA 02215, USA 

(Received 8 November 1993 and in revised form 7 June 1994) 

It is shown that realizability of second-moment turbulence closure models can be 
established by finding a Langevin equation for which they are exact. All closure 
models currently in use can be derived formally from the type of Langevin equation 
described herein. Under certain circumstances a coefficient in that formalism becomes 
imaginary. The regime in which models are realizable is, at least, that for which the 
coefficient is real. The present method does not imply unrealizable solutions when the 
coefficient is imaginary, but it does guarantee realizability when the coefficient is real; 
hence, this method provides sufficient, but not necessary, conditions for realizability. 
Illustrative computations of homogeneous shear flow are presented. It is explained 
how models can be modified to guarantee realizability in extreme non-equilibrium 
situations without altering their behaviour in the near-equilibrium regime for which 
they were formulated. 

1. Introduction 
The exact, unclosed Reynolds stress transport equation is usually the starting point 

for formulations of second-moment closure models. Modelling consists of replacing 
unclosed terms by semi-empirical formulae that express these terms as functions of the 
dependent variables. After introducing such models, quantities identified as ‘2’ or the 
like, no longer represent non-negative functions, obtained by squaring and averaging 
a random variable; rather, they are simply dependent variables of the model, obtained 
by solving a differential equation. However, it is desirable to formulate the equations 
of the model so that variables like 2 do maintain their non-negativity. The issue of 
realizability in turbulence modelling is whether solutions to the model are guaranteed 
to have non-negative variances and to satisfy other appropriate constraints, such as 
the Schwarz inequality between Reynolds stress components. Schumann (1977) and 
Lumley (1978) discuss these issues in the context of second-moment closure modelling. 
From a broader point of view, the adjective ‘realizable’ indicates that the solutions to 
the model equations could be second-order statistics of some stochastic process. 

In Speziale, Abid & Durbin (1993) models based on the Schumann (1977)- 
Lumley (1978) methodology were re-examined and it was found that some such 
models did not guarantee realizability. That failure reflects certain major difficulties 
in applying this method. These difficulties motivated the present exploration of a 
simpler, alternative approach. 

The obstacles in the Schumann (1977)-Lumley (1978) approach arise in the attempt 
to impose strong realizability, as discussed at length in Speziale et al. (1993). The 
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weak form of realizability (Schumann, 1977, introduced this constraint but used the 
term ‘over-realizability’) is more tractable than the strong form. At the same time 
it safeguards against negative variances, thus achieving the objective of realizabil- 
ity constraints : namely, proscribing inadvertent, unphysical solutions to the model 
equations. 

The present paper demonstrates how weak realizability can be analysed by a 
constructive method. This involves formulating a stochastic process for which the 
Reynolds stress model is the exact evolution equation of the second moments. The 
model then is guaranteed to be realizable because a correspondence to a well-defined 
stochastic process is established. In the present analysis, second-moment closure 
models of the type currently in use are shown to be exact for the statistics of a 
particular form of Langevin equation. Our analysis was heavily influenced by the 
papers of Haworth & Pope (1986) and Pope (1994). Those authors observed that the 
second-moment equation derived from the Langevin equation of a randomly evolving 
velocity vector constitutes a Reynolds stress closure model. In the present paper the 
analysis proceeds in the opposite direction : the second-moment closure is given and 
its realizability is analysed by finding a corresponding Langevin equation. We assume 
that the appropriate physics is accommodated by the second-moment closure; the 
stochastic analysis is purely a mathematical method for analysing such models. 

The application of stochastic analysis to the realizability of turbulence models first 
arose in conjunction with spectral closures (Orszag 1977). Kraichnan (1961) advocated 
deriving statistical moment models from stochastic processes and proved realizability 
of the Direct Interaction Approximation (DIA) by showing that it produced the exact 
moment equation of a random coupling model. Langevin equations subsequently 
were used to prove realizability of the DIA and of Test-Field and EDQNM models 
(Orszag 1977). 

Langevin equations are a special type of stochastic differential equation in which 
evolution is due to an imbalance between random forcing, deterministic forcing and 
deterministic damping. The presence of deterministic damping distinguishes Langevin 
equations from stochastic differential equations in general (Durbin 1983~) .  The 
Langevin equation can be regarded as a stochastic simulation of turbulent velocity 
fluctuations in a frame moving with the mean flow (Fung et al. 1992). The Langevin 
equation considered by Haworth & Pope (1986) and Pope (1994) is inadequate for 
the present task of analysing realizability of second-moment closure models; the 
Langevin equation that we will use is a special case of a more general form discussed 
in Durbin (1983~). The significant aspect of this general form is that anisotropic, 
white-noise forcing is included. Haworth & Pope (1986) argued on grounds of local 
isotropy that the forcing should be isotropic. Here we do not attribute any physical 
significance to the stochastic process. Anisotropic forcing is allowed simply to enable 
analysis of closure models that are not accessible from the Haworth & Pope (1986) 
formulation. 

In this paper we will consider only models for homogeneous turbulence. These 
form a cornerstone of inhomogeneous turbulence modelling, so realizability in homo- 
geneous turbulence is of primary importance. 

2. Stochastic differential equations 
This section provides some background for those unfamiliar with stochastic dif- 

ferential equations. It is highly non-rigorous; textbooks (e.g. Arnold 1974) can be 
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consulted for a more complete development. Aspects relevant to turbulence modelling 
are discussed in Durbin (1983b) and in Pope (1985). 

The simplest Langevin equation for an evolving random velocity vector is 
U .  

dui = - 1 d t  + (coE)”~ dWj(t). 
T 

Here u, is the dependent variable, t is the independent variable and Wl(t)  is the 
Wiener stochastic process (Arnold 1974); u, is a random function of t. The other 
quantities in (2.1) - T ,  co and E - are either constants or deterministic functions of t. 
The Wiener process can be thought of as a continuous random walk; its increments 
dWl(t) are the steps of the random walk - they provide Gaussian white-noise forcing 
in (2.1). The properties of these increments that will be used here are as follows: 

__ 
dWl = 0, dW,dWl = dt &, u,dW, = 0. (2.2) 

The last of these is the non-anticipating property of Ito stochastic calculus; the 
second shows that dW, is an isotropic random process with magnitude of O(dt)1/2. 
When computing moment equations it is necessary to retain terms to O(dWJ2. It 
follows from dW = 0(dt)’l2 that the stochastic process u(t)  defined by (2.1) is not 
differentiable with respect to t; du/dt is not defined as dt -+ 0. For present purposes, 
we wish to evaluate dii&/dt for the process (2.1). This is done as follows: 

d(ujuj) = ( ~ j  + duj)(uj + duj) - ~ i ~ j  

= uiduj + ujdui + duiduj. 

Substituting (2.1) for the differentials in (2.3) and retaining terms to O(dt) gives 

Averaging this, using the rules (2.2), produces the second-moment equation 
- duiuj uiuj 

= -2- + crJ&6ij. 
dt T 

Note that the isotropic term dij in (2.5) is generated by the white-noise forcing in 
(2.1). The results presented in this paper are a consequence entirely ofthis. 

Equation (2.5) can be regarded as a simple model for the evolution of anisotropic 
turbulence in the absence of mean velocity gradients. In that case the time-scale is 
set to T = q2/2& where q2/2 is the kinetic energy per unit mass and E is the rate of 
its dissipation. The exact energy equation is 

the trace of (2.5) is 

Comparing these shows that if co = 2/3 then (2.5) gives the correct energy equation. 
Equation (2.5) is the exact moment equation of the stochastic differential equation 
(2.1); hence, the solutions to this model are realizable as statistics of a stochastic 
process. Although (2.5) gives the correct energy equation, it is not a reasonable model 
for the individual components, m. It is used here solely to illustrate the mathematics. 

The above shows how the second-moment equation of a given stochastic process 
(2.1) can be regarded as a closure model. The actual problem that we wish to 
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address is the converse to this: we want to find a stochastic process that has a given 
second-moment equation. Consider the closure model 

for the above example of decaying anisotropic turbulence. It is easily verified, by 
applying the relations (2.2), that the second moments of 

c1 

2T 
du; = --u;dt + ( c ~ E ) ” ~  dW;(t) (2.9) 

are governed by equation (2.8), provided 

c o = - ( - - 1 ) .  2 c1q2 
3 2Tc 

It is essential to note that co appears under a square root in (2.9): solutions to (2.8) 
are guaranteed to be realizable if (2.9) is a valid, real-valued stochastic process; this 
requires that cg be non-negative. Hence a seficient condition for realizability of (2.8) is 
co 3 0. If T = q2/2&, then this condition is satisfied if c1 3 1, which is the well-known 
condition of Rotta (Schumann 1977). 

It should be noted that Langevin equations other than (2.9) have the second- 
moment equation (2.8): the second moment does not uniquely determine the stochastic 
process. Because of this, the association of realizability with co 3 0 provides a 
sufficient, but not necessary condition. Other Langevin equations with (2.8) as their 
second moment are easily obtained: simply add a deterministic force F,dt, or a 
random term W Q k p l d t ,  where ak[ is an antisymmetric non-random tensor, to the 
right-hand side of (2.9). Neither of these modifications alter the realizability condition 
c I  3 1 because the isotropic terms in (2.8) are still generated by the white-noise forcing 
in (2.9). However, they do change the random process, demonstrating non-uniqueness 
of the correspondence between Langevin and Reynolds stress equations. 

3. The IP model 
A second-moment closure model is a set of evolution equations for the Reynolds 

stress tensor, uiui and usually for the dissipation rate, E. In homogeneous turbulence 
these consist of a system of ordinary differential equations. The exact equations 
contain terms that are not functions of the dependent variables, and hence are not 
a closed system. Modelling consists in replacing unclosed terms by functions of the 
dependent variables. Our concern in this paper is not with the process of formulating 
models, it is with analysing existing models. The original references describe the basis 
of the models. 

One of the simplest models for homogeneous turbulence is the ‘basic’, or IP, model 
(Launder 1989). This is a sum of the Rotta return-to-isotropy and the Isotropization- 
of-Production formulae. Its evolution equation for the Reynolds stress is 

$9,) + P i j  - ; E d i j .  

The first two terms on the right-hand side are the Rotta and IP terms. The theoretical 
value of the IP constant c2 is 3 / 5 ;  the empirical, Rotta constant c1 is taken to be 1.8. 
Here Pj j  is the production tensor: 

Pjj = -ask u j  - ujukak u;, (3 .2)  
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I11 
FIGURE 1. Solution trajectories in homogeneous shear flow projected onto the second-invar- 
iant/third-invariant plane. The interior of the curvilinear triangle is the realizable region. . . . ., 
Original IP model; - - -, modified, realizable IP model. 

where Ui is the mean velocity. P = 1/2& is the rate of turbulent energy production 
(per unit mass). 

Equation (3.1) is the second moment of the Langevin equation 

provided that 

(3.3) 

This was derived by inspection, essentially applying the method of the previous 
section in reverse; the formal verification of (3.2) and (3.3) follows by substituting 
into (2.3) and averaging using (2.2). Expression (3.4) for co must be non-negative 
for (3.3) to be a valid Langevin equation because co appears under a square-root. It 
follows from (3.4) that (3.1) will have realizable solutions if 

P 1-Cl -2- 
& c2 

(3.5) 

where we have used T = q2/2& for the time-scale. For typical values of c1 and c2 the 
right-hand side of (3.5) is approximately -1. In most situations to which Reynolds 
stress models are applicable P I E  will be larger than -1, so that the IP model will 
have realizable solutions. 

A succinct derivation of this result is as follows: the right-hand side of (3.4) is the 
coefficient of d i j  in (3.1), non-dimensionalized by E. This isotropic term is generated 
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by squaring the white-noise forcing in (3.3). Hence, the sufficient condition (3.5) is 
simply that the coefficient of 6,, in (3.1) has a real-valued square-root. The stochastic 
analysis explains why this assures realizability. 

This proof of realizability is by construction: a stochastic process with statistics 
described by (3.1) can be realized by solving (3.3). The existence of such a process is 
suficient for realizability, but the process is not unique; hence (3.5) is not a necessary 
condition. Nevertheless, we have found in numerical computations that unrealizable 
solutions to (3.1) can be found when P I E  is very near the bound given by (3.5). 
Figure 1 illustrates this via a computation of homogeneous shear flow turbulence. 
In homogeneous shear flow the mean velocity is in the x1 direction and is given by 
U1 = Sx2, where S is the mean rate of shear. In the computation, c1 = 1.8 and 
c2 = 0.6: hence (3.5) guarantees realizable solutions when P / E  3 -4/3, provided that 
the initial conditions are realizable. The initial conditions for this case are 

Sq2 /& = 3 ;  bll = b22 = 0.16; b33 = -0.32; b12 = 0.4; b13 = b23 = 0 (3.6) 

in which b,, = u,uj/q2 - 6,,/3 is the anisotropy tensor. The initial location in figure 1 
is -11 = 0.237; 111 = 0.043, in which 

bkrbl!f ; 111 = bkl blrnbrnk 11 = -__ 
2 3 -  

The solid lines in figure 1 are boundaries of the Lumley (1978) triangle: realizable 
solutions must lie inside it. The dotted curve is a numerical solution to the IP 
model. Although the initial condition (3.6) makes P I E  = -1.2, which satisfies ( 3 3 ,  
as the solution evolves P I E  decreases below -4/3 and shortly thereafter exits the 
Lumley triangle. This is demonstrated in figure 2, which shows the evolution of 
P I E  and the function F = 1/9 + I1 + 3111, defined in Lumley (1978). The latter is 
0 on the upper boundary of the triangle in figure 1 and as the trajectory exits the 
triangle F crosses from positive to negative values. Before the trajectory re-enters the 
triangle P I E  has become greater than -4/3. This is why the caveat was made that 
(3.5) guarantees realizability if the initial conditions are realizable. The trajectory 
is ultimately attracted to the stable fixed point -11 = 0.0563; 111 = 0.0043. In all 
computations the standard &-equation, 

2& F: = - (c,, P - C,,E) , 
q2 

(3.7) 

with c,, = 1.5 and c,, = 1.8 was used. These constants give P / E  = 1.6 in equilibrium, 
which is the average of the experimental values measured for homogeneously sheared 
turbulence. 

The solution to (3.3) is a Markovian stochastic process. It follows that (3.5) must 
be violated at the instant when a trajectory exits the Lumley triangle. The future state 
of a Markov process is statistically independent of its past; because (3.1) is exact for 
statistics of the Markov process (3.3), past transgressions of (3.5) are irrelevant to 
future behaviour. If a trajectory begins inside the triangle, P I E  drops below -4/3 but 
recovers before the trajectory reaches the boundary; the trajectory cannot then exit 
the triangle with P I E  > -4/3. 

The Markov property and the non-anticipating property described in equation (2.2) 
make the dependence of coefficients in (3.3) on ensemble-averaged statistics easy to 
interpret. If the solution to (3.3) is advanced by finite difference integration, the 
coefficients used to step forward to t + At must be evaluated at the present time, t. 
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FIGURE 2. Time evolution of P I E  and F = 119 + I1 + 3111 corresponding to the trajectory of 
the original IP model. As F becomes negative at St  = 1 the solution exits the Lumley triangle. 
P I E  starts at -1.2 but soon decreases below -4/3, violating the sufJient condition for realizable 
trajectories. - , P I E ;  - - -, F.  

Hence the information required to evaluate the coefficients is always available and 
does not affect the time advancement: the stochastic process is well defined. 

Equation (3.4) suggests a method of guaranteeing that solutions are always realiz- 
able: one need only assure satisfaction of inequality (3.5). For example, if c1 = 1.8 is 
replaced by 

c1 = max[1.8, 1 - C ~ P / E ]  (3.8) 

(assuming T = q2/2.5) then co > 0 unconditionally. Under most conditions this 
modification will reduce to c1 = 1.8; under extreme conditions that would violate 
(3 .9 ,  the maximum in (3.8) will enforce realizability. This is illustrated by the dashed 
curve in figure 1: it remains inside the triangle. The effect of (3.8) is to enhance 
the return to isotropy when P I E  < -4/3. Obviously, a smooth function can be used 
instead of the maximum. 

As a more extreme example, figure 3 shows trajectories for the initial condition 
Sq2/& = 10; bll = b22 = 0.15; b33 = -0.3; b12 = 0.3; bl3 = b23 = 0, for which 
P / E  = -3.0, -11 = 0.158 and I11 = 0.020 initially. In this case the original IP model 
promptly exits the realizable region inside the triangle, while the model constrained by 
(3.8) stays well within it. It should be emphasized that (3.8) is an ad hoc mathematical 
device to enforce realizability in extreme situations. A model meant to predict the 
Reynolds stresses in such cases would have to incorporate empiricism into a function 
that enforced co 2 0 in a manner dictated by physical considerations. 

4. The general linear model 
Launder, Reece & Rodi (1975) derived the most general Reynolds stress closure 

that is linear in the anisotropy tensor. We will show that model to be the second 
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I11 
FIGURE 3. Solution trajectories as in figure 1 but with a different initial condition: 

. . . ., original IP model; - - -, modified, realizable IP model. 

moment of the stochastic differential equation 

(4.1) 
in which W and W’ are independent Wiener processes (dWridW, = 0). M is a 
symmetric matrix that is defined by 

where M$ = MikMk,, M2 = Mik and Sij is the rate of strain tensor, defined as 
(divj + djUi)/2. The matrix M can be described as a generalized square-root of 
-q2S/2c .  It can be constructed as follows: in incompressible flow, S is a symmetric 
matrix with eigenvalues that sum to zero; it can be diagonalized by the unitary matrix 
U of eigenvectors: 

qL -S = U diag[11,12,A3] - ‘U, 
2& (4.3) 

where A1 2 1 2  >, 1 3  are the eigenvalues in decreasing order. They satisfy the traceless 
condition 

1 1  + 1 2  + a 3  = 0. (4.4) 
The generalized square-root matrix is given by 

M = U diag [0, (1, - & ) ‘ I 2 ,  (11 - A3)1/2] t U .  (4.5) 

By virtue of (4.4), M 2  = 311. It can be verified by substitution that M satisfies (4.2). 
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The Reynolds stress equation for (4.1) is derived by applying the rules (2.2): 

(4.6) 
d m  
2 = -SET - c2Pij - c3Dij + c , E M ~  + Pij + C O E ~ ~ , .  

D!j = -iijiQjUk - zjiQiUk is a tensor defined by Launder et al. (1975). Consistency 
with the energy equation 

dt T '.I 

= P - &  
1 dq2 
2 dt 
_ -  

requires that 

~1 - 1 + ( ~ 2  

With this value, (4.6) becomes the General Linear Model 

v - c3(D.. - ipd . . )  - c - S . .  q2 + p . .  - $6 ... 1J 1J S 2 1J ?t 

Realizability ( C O  2 0) is guaranteed if 

(and if c, 2 0). For instance, if c1 = 1.8 is usually a satisfactory value then 

1.8, 1 - (c2 + 
& 2  

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

will ensure realizability in extreme cases without altering the model in typical cases. 
M 2  = 311 has been substituted in (4.11); the rate of strain tensor enters the realizability 
condition via its most positive eigenvalue. 

Again, a succinct derivation of (4.10) is to note that co is the coefficient of 6, in 
the Reynolds stress model (4.9) after the representation (4.2) is substituted. A non- 
negative value of this coefficient assures realizable solutions. Launder et al. (1975) 
imposed certain symmetry and normalization constraints that led them to specialize 
(4.9) by setting 

8 c - 2  6 0 ~  - 4 
; c,=- 

55 ' 
, c3=- c2 = - c + 8 *  

11 11 
(4.12) 

where c is a constant they set to 0.4 - this is the LRR model. With (4.12), the 
condition (4.1 1) becomes 

1 P 
1.8, 1 - 0.873- + 0.54511 . 

& 
(4.13) 

This modification to c1 constrains the solutions of the LRR model to be realizable. 
Figure 4 shows trajectories of the LRR model for homogeneously sheared turbu- 

lence, with initial conditions: S q 2 / &  = 20; bll = -0.27; b22 = -0.33; b33 = 0.6; b12 = 
b13 = b23 = 0. These values give P / E  = 0, -11 = 0.27 and I11 = 0.053. The initial 
value of 1 - 0.873P/~  + 0.545111 is 3.73 (note that A1 = Sq2/4&) so that (4.10) is vio- 
lated when c1 = 1.8. The dotted curve shows that the LRR model exits the realizable 
region for this initial condition. In this calculation, P I E  starts at 0 and subsequently 
becomes positive; it is equal to 0.78 at the time when the trajectory exits the Lumley 
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FIGURE 4. Solution trajectories of the LRR model projected onto the second-invariant/ 
third-invariant plane. . . . ., original LRR model; - - -, modified, realizable LRR model. 

triangle. Hence, the rate of strain can drive the LRR model unrealizable despite the 
rate of energy production being positive. This contrasts with the IP model, which can 
only become unrealizable if the production is negative. Thus, the sufficient conditions 
derived by the present method provide an insight into the existence of unrealizable 
trajectories. The solution trajectory remains inside the realizable region when the 
modification (4.13) is applied, as shown by the dashed curve in figure 4. 

5. Non-linear models 
The method of stochastic analysis outlined here is quite general and can be applied 

to Reynolds stress closures that are nonlinear in the anisotropy tensor as well. For 
instance, by adding the term 

(5.1) 
c4 
- bikukdt 
2T 

to (4.1) and making the coefficients suitable functions of P I E  and 11, a Langevin 
equation can be found for the SSG model (Speziale, Sarkar & Gatski 1991). To 
obtain this Langevin equation the coefficients in (4.1) and (5.1) are set to 

4 a1 + a ; -  + - ;c2 = - 
c1 =' i  & 3-1 

c4 I 
where the constants of the SSG model are denoted by at (their numerical values are 
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I11 
FIGURE 5. Solutions of the SSG model in the second-invariant/third-invariant plane. . - . ., Original 
SSG model; - - -, SSG model modified by (5.4); -.- SSG model modified by (5.4) only when 
F < 10-3. 

a1 = 3.4, u; = 1.8, a2 = 4.2, a3 = 4/5, a; = 1.3, a4 = 1.25, a5 = 0.4). In conjunction 
with (5.2) 

For the ai given in Speziale et al. (1991), c, > 0 so a sufficient condition for realizabil- 
ity is that the expression in (5.3) with (5.2) is non-negative. The sufficient condition 
(5.3) for realizability now depends upon the ratio of production to dissipation, the 
second invariant of the anisotropy tensor and the non-dimensional mean rate of 
strain. Realizability can be guaranteed by a method analogous to (3.8) or (4.11): 
constrain the model parameter a1 by 

P 
1.7, 1 - (cl - kal) - (c2 + c3)- - 2c411 + $2,11]. (5.4) 

E 

In the SSG model a1/2 corresponds to the Rotta constant c1 of the LRR and IP 
models; Speziale et al. selected the value 1.7 instead of the value 1.8 that was used in 
(3.8) and (4.11). 

Figure 5 shows solutions to the original model and to the model modified by (5.4). 
The initial conditions are the same as in figure 4. Again P I E  is non-negative at all 
times. Initially co < 0 and the original SSG model promptly exits the realizable region. 
The dashed curve imposes the constraint (5.4) to maintain a realizable trajectory. 

Equation (5.4) prevents the solution from reaching the vicinity of the upper bound- 
ary of the Lumley triangle. This boundary is defined by F = 1/9 + I1 + 3111 = 0, 
1/12 d -11 < 1/3. The chain-dot curve is a computation in which (5.4) was im- 
posed only when F < lop3. This illustrates the Markovian property that the solution 
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cannot exit the Lumley triangle with co 2 0; thus, (5.4) need only be imposed near 
F = 0. It also serves to show that arbitrariness exists in the method of imposing 
realizability. This arbitrariness provides flexibility to incorporate empiricism into 
realizable models. Hence it is a virtue, not a fault, of the present method. 

6. Discussion 
The present analysis differs from those of Schumann (1977) and Lumley (1978). 

Theirs are local analyses in the neighbourhood of the two-component line of the 
Lumley triangle. The present approach is global and does not require detailed 
examination of the two-component limit. 

The two-component state occurs when one component of the diagonalized Reynolds 
stress tensor - i.e. the tensor projected onto principal axes - vanishes. Call this 
component u,U, (with no implied summation on a). For functions differentiable 
with respect to time, the Schwarz inequality requires that when u,U, = 0 then 
d m / d t  = 0; an additional, positive second-derivative condition d2U,U,/dt2 > 0 
ensures that u,uol = 0 is a local minimum. The imposition of these conditions, on 
a model for which the two-component state is attainable, is referred to as ‘strong 
realizability’. 

The ‘weak realizability’ constraint (Schumann 1977, Speziale et al. 1993) requires 
only d m / d t  > 0 in a neighbourhood of = 0. This makes the two-component 
state inaccessable, and hence obviates the need for a second-derivative condition. The 
second-derivative condition is the source of difficulty in applying the strong form of 
realizabilit y. 

Solutions to the Ito stochastic differential equations used in this paper are not 
differentiable with respect to time so d=/dt need not vanish with U,U,. However 
u,U, is a quantity squared so it will automatically be non-negative; a corollary is that 
if U,Ua becomes zero at some instant, its derivative with respect to time at that instant 
must be non-negative. From equation (2.3) 

(6.1) 

If i&i& = 0 then uaduu = 0 and (6.1) shows that d w  = (du,)2 2 0. Thus the 
principal components of the Reynolds stress tensor cannot become negative because 
either the two-component state is repelling (d- > 0 when U,U, = 0) or, if the 
two-component line is reached, it cannot be crossed. 

For each stochastic equation, (du,j2 in (6.1) is determined by the white-noise forcing. 
For equation (3.3), (ducO2 = cosdt. If (3.8) is imposed then co could become 0 near the 
two-component state. For the more general case (4.1 j, (dua)2 = cocdt + c,EM&. In the 
presence of mean rate of strain this can be positive in the two-component state, even 
when (4.11) is imposed. 

If a one-to-many correspondence of a second-moment closure to a family of 
uniformly valid Langevin equations can be found then the closure model is guaranteed 
to satisfy weak realizability, as defined in Schumann (1977) and Speziale et al. (1993). 

-- 
d i&i& = 2u,dua + (duu)2. 
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